Nguyen, Thu H M; Carreira, Patricia E; Sanchez-Luque, Francisco J; Schauer, Stephanie N; Fagg, Allister C; Richardson, Sandra R; Davies, Claire M; Jesuadian, Samuel J; Kempen, Marie-Jeanne H C; Troskie, Robin-Lee; James, Cini; Beaven, Elizabeth A; Wallis, Tristan P; Coward, Jermaine I G; Chetty, Naven P; Crandon, Alexander J; Venter, Deon J; Armes, Jane E; Perrin, Lewis C; Hooper, John D; Ewing, Adam D; Upton, Kyle R; Faulkner, Geoffrey J L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution (Journal Article) Cell Reports, 23 (13), pp. 3730–3740, 2018, ISSN: 2211-1247. (Abstract | Links | BibTeX | Altmetric) @article{nguyen_l1_2018, title = {L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution}, author = {Thu H M Nguyen and Patricia E Carreira and Francisco J Sanchez-Luque and Stephanie N Schauer and Allister C Fagg and Sandra R Richardson and Claire M Davies and Samuel J Jesuadian and Marie-Jeanne H C Kempen and Robin-Lee Troskie and Cini James and Elizabeth A Beaven and Tristan P Wallis and Jermaine I G Coward and Naven P Chetty and Alexander J Crandon and Deon J Venter and Jane E Armes and Lewis C Perrin and John D Hooper and Adam D Ewing and Kyle R Upton and Geoffrey J Faulkner}, url = {http://www.sciencedirect.com/science/article/pii/S2211124718308714}, doi = {10.1016/j.celrep.2018.05.090}, issn = {2211-1247}, year = {2018}, date = {2018-06-01}, urldate = {2018-08-28}, journal = {Cell Reports}, volume = {23}, number = {13}, pages = {3730--3740}, abstract = {Summary LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity.}, keywords = {}, pubstate = {published}, tppubtype = {article} }
Summary LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity. |