Biography

Research Links:
Publications:
2019 |
Sanchez-Luque, Francisco J; Kempen, Marie-Jeanne H C; Gerdes, Patricia; Vargas-Landin, Dulce B; Richardson, Sandra R; Troskie, Robin-Lee; Jesuadian, Samuel J; Cheetham, Seth W; Carreira, Patricia E; Salvador-Palomeque, Carmen; García-Cañadas, Marta; Muñoz-Lopez, Martin; Sanchez, Laura; Lundberg, Mischa; Macia, Angela; Heras, Sara R; Brennan, Paul M; Lister, Ryan; Garcia-Perez, Jose L; Ewing, Adam D; Faulkner, Geoffrey J LINE-1 Evasion of Epigenetic Repression in Humans (Journal Article) Molecular Cell, 0 (0), 2019, ISSN: 1097-2765. @article{sanchez-luque_line-1_2019, title = {LINE-1 Evasion of Epigenetic Repression in Humans}, author = {Francisco J Sanchez-Luque and Marie-Jeanne H C Kempen and Patricia Gerdes and Dulce B Vargas-Landin and Sandra R Richardson and Robin-Lee Troskie and Samuel J Jesuadian and Seth W Cheetham and Patricia E Carreira and Carmen Salvador-Palomeque and Marta Garc\'{i}a-Ca\~{n}adas and Martin Mu\~{n}oz-Lopez and Laura Sanchez and Mischa Lundberg and Angela Macia and Sara R Heras and Paul M Brennan and Ryan Lister and Jose L Garcia-Perez and Adam D Ewing and Geoffrey J Faulkner}, url = {https://www.cell.com/molecular-cell/abstract/S1097-2765(19)30396-X}, doi = {10.1016/j.molcel.2019.05.024}, issn = {1097-2765}, year = {2019}, date = {2019-01-01}, urldate = {2019-06-24}, journal = {Molecular Cell}, volume = {0}, number = {0}, abstract = {textlessh2textgreaterSummarytextless/h2textgreatertextlessptextgreaterEpigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3ʹ transduction. The source (donor) L1 for this insertion was slightly 5ʹ truncated, lacked the YY1 binding site, and was highly mobile when tested textitin vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.textless/ptextgreater}, keywords = {}, pubstate = {published}, tppubtype = {article} } textlessh2textgreaterSummarytextless/h2textgreatertextlessptextgreaterEpigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3ʹ transduction. The source (donor) L1 for this insertion was slightly 5ʹ truncated, lacked the YY1 binding site, and was highly mobile when tested textitin vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.textless/ptextgreater |
2018 |
Nguyen, Thu H M; Carreira, Patricia E; Sanchez-Luque, Francisco J; Schauer, Stephanie N; Fagg, Allister C; Richardson, Sandra R; Davies, Claire M; Jesuadian, Samuel J; Kempen, Marie-Jeanne H C; Troskie, Robin-Lee; James, Cini; Beaven, Elizabeth A; Wallis, Tristan P; Coward, Jermaine I G; Chetty, Naven P; Crandon, Alexander J; Venter, Deon J; Armes, Jane E; Perrin, Lewis C; Hooper, John D; Ewing, Adam D; Upton, Kyle R; Faulkner, Geoffrey J L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution (Journal Article) Cell Reports, 23 (13), pp. 3730–3740, 2018, ISSN: 2211-1247. @article{nguyen_l1_2018, title = {L1 Retrotransposon Heterogeneity in Ovarian Tumor Cell Evolution}, author = {Thu H M Nguyen and Patricia E Carreira and Francisco J Sanchez-Luque and Stephanie N Schauer and Allister C Fagg and Sandra R Richardson and Claire M Davies and Samuel J Jesuadian and Marie-Jeanne H C Kempen and Robin-Lee Troskie and Cini James and Elizabeth A Beaven and Tristan P Wallis and Jermaine I G Coward and Naven P Chetty and Alexander J Crandon and Deon J Venter and Jane E Armes and Lewis C Perrin and John D Hooper and Adam D Ewing and Kyle R Upton and Geoffrey J Faulkner}, url = {http://www.sciencedirect.com/science/article/pii/S2211124718308714}, doi = {10.1016/j.celrep.2018.05.090}, issn = {2211-1247}, year = {2018}, date = {2018-06-01}, urldate = {2018-08-28}, journal = {Cell Reports}, volume = {23}, number = {13}, pages = {3730--3740}, abstract = {Summary LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity.}, keywords = {}, pubstate = {published}, tppubtype = {article} } Summary LINE-1 (L1) retrotransposons are a source of insertional mutagenesis in tumor cells. However, the clinical significance of L1 mobilization during tumorigenesis remains unclear. Here, we applied retrotransposon capture sequencing (RC-seq) to multiple single-cell clones isolated from five ovarian cancer cell lines and HeLa cells and detected endogenous L1 retrotransposition in vitro. We then applied RC-seq to ovarian tumor and matched blood samples from 19 patients and identified 88 tumor-specific L1 insertions. In one tumor, an intronic de novo L1 insertion supplied a novel cis-enhancer to the putative chemoresistance gene STC1. Notably, the tumor subclone carrying the STC1 L1 mutation increased in prevalence after chemotherapy, further increasing STC1 expression. We also identified hypomethylated donor L1s responsible for new L1 insertions in tumors and cultivated cancer cells. These congruent in vitro and in vivo results highlight L1 insertional mutagenesis as a common component of ovarian tumorigenesis and cancer genome heterogeneity. |
2017 |
Richardson, Sandra R; Gerdes, Patricia; Gerhardt, Daniel J; Sanchez-Luque, Francisco J; Bodea, Gabriela-Oana; ~n, Martin Mu; Jesuadian, Samuel J; Kempen, Marie-Jeanne H C; Carreira, Patricia E; Jeddeloh, Jeffrey A; Garcia-Perez, Jose L; Jr, Haig Kazazian H; Ewing, Adam D; Faulkner, Geoffrey J Heritable L1 retrotransposition in the mouse primordial germline and early embryo (Journal Article) Genome Res., 27 (8), pp. 1395–1405, 2017. @article{Richardson2017-hr, title = {Heritable L1 retrotransposition in the mouse primordial germline and early embryo}, author = {Sandra R Richardson and Patricia Gerdes and Daniel J Gerhardt and Francisco J Sanchez-Luque and Gabriela-Oana Bodea and Martin Mu{~n}oz-Lopez and Samuel J Jesuadian and Marie-Jeanne H C Kempen and Patricia E Carreira and Jeffrey A Jeddeloh and Jose L Garcia-Perez and Haig H Kazazian Jr and Adam D Ewing and Geoffrey J Faulkner}, url = {http://dx.doi.org/10.1101/gr.219022.116}, year = {2017}, date = {2017-08-01}, journal = {Genome Res.}, volume = {27}, number = {8}, pages = {1395--1405}, abstract = {LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of $geq$1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.}, keywords = {}, pubstate = {published}, tppubtype = {article} } LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of $geq$1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo. |
Kempen, Marie-Jeanne H C; Bodea, Gabriela O; Faulkner, Geoffrey J Neuronal Genome Plasticity: Retrotransposons, Environment and Disease (Incollection) Human Retrotransposons in Health and Disease, pp. 107–125, Springer, Cham, 2017. @incollection{Kempen2017-eq, title = {Neuronal Genome Plasticity: Retrotransposons, Environment and Disease}, author = {Marie-Jeanne H C Kempen and Gabriela O Bodea and Geoffrey J Faulkner}, url = {https://link.springer.com/chapter/10.1007/978-3-319-48344-3_5}, year = {2017}, date = {2017-01-01}, booktitle = {Human Retrotransposons in Health and Disease}, pages = {107--125}, publisher = {Springer, Cham}, abstract = {The neuronal genome has long been considered as a stably persisting entity interpreted as the foundation of neurobiology. Over the past decade, it has become increasingly clear that mobile genetic elements, such as the retrotransposon LINE-1 (L1), are actively transcribed and transpose in the healthy brain. L1 activity therefore provides a route to somatic genome diversity and dynamism in neuronal populations. Here, we discuss the discovery of L1 retrotransposition during neurogenesis, and consider how neuronal cells regulate retrotransposition in response to endogenous and environmental stimuli. We also bring forward hypotheses relating to how L1 impacts normal brain development and function, as well as how abnormal L1 mobilisation could contribute to neurological disease susceptibility and pathophysiology.}, keywords = {}, pubstate = {}, tppubtype = {incollection} } The neuronal genome has long been considered as a stably persisting entity interpreted as the foundation of neurobiology. Over the past decade, it has become increasingly clear that mobile genetic elements, such as the retrotransposon LINE-1 (L1), are actively transcribed and transpose in the healthy brain. L1 activity therefore provides a route to somatic genome diversity and dynamism in neuronal populations. Here, we discuss the discovery of L1 retrotransposition during neurogenesis, and consider how neuronal cells regulate retrotransposition in response to endogenous and environmental stimuli. We also bring forward hypotheses relating to how L1 impacts normal brain development and function, as well as how abnormal L1 mobilisation could contribute to neurological disease susceptibility and pathophysiology. |
Share this:
- Click to share on Twitter (Opens in new window)
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to share on Skype (Opens in new window)
- Click to share on Tumblr (Opens in new window)
- Click to share on Pinterest (Opens in new window)
- Click to share on Pocket (Opens in new window)
- Click to print (Opens in new window)