Abstract
Somatic LINE-1 (L1) retrotransposition during neurogenesis is
a potential source of genotypic variation among neurons. As a
neurogenic niche, the hippocampus supports pronounced L1
activity. However, the basal parameters and biological impact
of L1-driven mosaicism remain unclear. Here, we performed
single-cell retrotransposon capture sequencing (RC-seq) on
individual human hippocampal neurons and glia, as well as
cortical neurons. An estimated 13.7 somatic L1 insertions
occurred per hippocampal neuron and carried the sequence
hallmarks of target-primed reverse transcription. Notably,
hippocampal neuron L1 insertions were specifically enriched in
transcribed neuronal stem cell enhancers and hippocampus
genes, increasing their probability of functional relevance.
In addition, bias against intronic L1 insertions sense
oriented relative to their host gene was observed, perhaps
indicating moderate selection against this configuration in
vivo. These experiments demonstrate pervasive L1 mosaicism at
genomic loci expressed in hippocampal neurons.
Links
BibTeX (Download)
@article{Upton2015-qu, title = {Ubiquitous L1 mosaicism in hippocampal neurons}, author = {Kyle R Upton and Daniel J Gerhardt and Samuel J Jesuadian and Sandra R Richardson and Francisco J S\'{a}nchez-Luque and Gabriela O Bodea and Adam D Ewing and Carmen Salvador-Palomeque and Marjo S van der Knaap and Paul M Brennan and Adeline Vanderver and Geoffrey J Faulkner}, url = {http://dx.doi.org/10.1016/j.cell.2015.03.026}, year = {2015}, date = {2015-04-01}, journal = {Cell}, volume = {161}, number = {2}, pages = {228--239}, abstract = {Somatic LINE-1 (L1) retrotransposition during neurogenesis is a potential source of genotypic variation among neurons. As a neurogenic niche, the hippocampus supports pronounced L1 activity. However, the basal parameters and biological impact of L1-driven mosaicism remain unclear. Here, we performed single-cell retrotransposon capture sequencing (RC-seq) on individual human hippocampal neurons and glia, as well as cortical neurons. An estimated 13.7 somatic L1 insertions occurred per hippocampal neuron and carried the sequence hallmarks of target-primed reverse transcription. Notably, hippocampal neuron L1 insertions were specifically enriched in transcribed neuronal stem cell enhancers and hippocampus genes, increasing their probability of functional relevance. In addition, bias against intronic L1 insertions sense oriented relative to their host gene was observed, perhaps indicating moderate selection against this configuration in vivo. These experiments demonstrate pervasive L1 mosaicism at genomic loci expressed in hippocampal neurons.}, keywords = {Faulknerlab, Major_Publication}, pubstate = {published}, tppubtype = {article} }